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Abstract 

We describe a formal, model-based, approach for the analysis and design of human-automation 

interaction.  The approach is guided by two primary objectives: first, that the interaction be correct 

in the sense that it will enable the user to operate the system reliably; second, that the interaction be 

as simple as possible while maintaining all the required operational flexibility. With these objectives 

we first discuss a methodology for verification of user-interface correctness, thereby addressing the 

issue of operational reliability, and then present an algorithmic approach for designing simple and 

succinct interfaces. 

Introduction 

There are numerous ways to model human interaction with machines. Some models focus on the 

perceptual and cognitive aspects of the interaction, such as human memory, response capabilities, 

attention span, decision-making, and action-selection (e.g., see Endsley, Wickens, Salvucci, this 

Handbook). The aim of these models is to describe and analyze human abilities and limitations in 

the context of task execution. These models are also aimed at understanding users' skill acquisition 

(e.g., see Ritter et al., this Handbook).  An important objective of such models is to predict 

conditions under which human interaction may become unduly stressful and error-prone. 

Traditionally, faulty interactions of users with machines, sometimes leading to catastrophic results, 

have been attributed to machine functionality failures or human error, with the latter sometimes 

blamed on inadequate interface design. However, such faulty interactions can also occur due to 

unpredictable responses of the machine to user interaction, leading to erroneous interpretation of the 

machine’s behavior. Such ambiguities arise due to design errors, such that the information supplied 

to the user about the machine’s status is insufficient, untimely, or inaccurate. Ambiguities may also 



arise when the user is offered an inadequate set of possible actions that will not enable the 

achievement of operational goals or the desired level of performance.  

We illustrate the subtle issue of unpredictable machine responses with the following example: An 

airliner is flying at 8,000 feet under autopilot control. The crew receives an air traffic control 

directive to climb and level off at 10,000 feet. The pilot enters the 10,000-foot altitude constraint 

into the autopilot, engages a mode called “VERTICAL SPEED,” and then selects a rate of climb (e.g., 

2,000 feet/min). When the aircraft reaches an altitude of 9,000 feet, air traffic control directs the 

crew to descend back to 8,000 feet. In response, the pilot enters the new altitude of 8,000 feet into 

the autopilot. Normally, the pilot would expect the aircraft to descend and level off at 8,000 feet. 

However, it is also possible that the aircraft continues climbing indefinitely (with an eventual stall), 

unless some control action is taken by the crew (NTSB, 1980).  

In this situation, under identical interface annunciations and the same pilot input (i.e., entering the 

new 8,000 feet altitude setting when the aircraft is at 9,000 feet), two different outcomes might 

occur with the crew being unable to predict which. The problem here is not that the autopilot 

behaves ambiguously: The autopilot, in fact, is fully deterministic. It is the interface that does not 

provide sufficient information to resolve the situation. What happens is that if the newly entered 

altitude setting (8,000 feet) is above a certain reference value, the aircraft will descend and level off 

as expected, but if the newly entered altitude is below the reference value, the aircraft will continue 

climbing. Yet, this reference altitude value (which changes as a function of the aircraft’s speed and 

altitude) is not presented on the interface. Such an interface is defined as “incorrect” because the 

consequences of user interaction with the machine cannot be predicted reliably.  

In this Chapter we address problem of insuring correct human-machine interaction as measured by 

the ability of the user to perform reliably a set of specified tasks. That is, making sure that the 

machine interface has been properly designed to enable the user to achieve the required operating 

tasks. We consider such interfaces to be “correct”.   

Hence the first main topic of this chapter deals with a formal, model based, methodology for 

verifying interface correctness and for detecting design deficiencies. The models used in this formal 

verification are derived from the behavioral description of the machine and the operating 

specifications given in the user-manual and reflected in the interface. These models are then 

systematically tested for correct correspondence and compatibility. Deficiencies are detected and 

classified. 



The second topic concerns design.  Traditionally, the practice of designing user interfaces has been 

based on a bottom-up approach. The designer starts with the operating specifications of the 

machine, the operational constraints, and other desired information regarding the system. The 

interface is directly designed to accommodate these operational specifications providing the user 

with suitable inputs to the machine and information about the machine’s behavior.  For example, in 

a motor vehicle, the interface includes input devices such as steering wheel, gas pedal, gearshift and 

brakes, as well as information about the car’s speed, distance of travel, and quantity of fuel. The 

interface is then further enhanced by features that the designer deems necessary for the user to have 

in order to operate the machine efficiently.  For example, whether the engine’s temperature is 

normal or dangerously high. Such added information is usually based on the designer’s knowledge 

about the machine. To insure that the user interface is ultimately adequate, designers rely on reviews 

and inspections, simulations and extensive testing. This approach is costly and not always sufficient, 

especially in automated control systems that are quite large and exhibit complex behaviors and 

interactions.    

Elements of Human-Machine Interaction 

In the interaction between the user and the machine, four elements play crucial roles. These are (1) 

the machine’s behavior; (2) the user’s task specification; (3) the user interface; and (4) the model 

that the user has about the machine’s behavior (as described in the user-manual). These four 

elements must correspond suitably to insure correct and reliable user-machine interaction. 

(1) We consider machines that can be modeled as state transition systems. There are two classes of 

transitions: those that are manually triggered by the user, and those that are automatically 

triggered (either by the machine’s internal dynamics or by the environment).  

(2) Formally, a task consists of driving the system to a specified set of states or to a prescribed 

sequence(s) of such sets. Since it is not important which specific state in such a set the machine 

visits, the user is not required to distinguish among them provided the task can be executed 

correctly and reliably. Accordingly, we partition the machine's state-space into disjoint clusters 

that we shall call “specification classes.”  A specification class is then a set of internal states 

that, according to the design specifications, need not be distinguished by the user.  The partition 

is typically performed based on task analysis and judgments of expert users and developers.  The 

most common task requirement is for the user to track these specification classes, 

unambiguously. 



(3) The interface consists of input devices such as push buttons, rotary switches, and dials through 

which the user interacts with the machine, as well as indications through which the user obtains 

information about the machine’s state.   

(4) The user model constitutes a formal description of possible user actions and machine responses 

as described by the designer and represented in the operation manual. This information is 

commonly provided in the form of fragmented statements such as "When the machine is in 

mode A and button x is pushed, the machine transitions to mode B."  The user-model is the 

assembly of these fragments into a complete state transition system.  

To illustrate the relations between these four elements, consider the simple machine described in 

Figure 1(a). 

 

    
 

Figure 1(a): Machine model.   Figure 1(b): Machine mode and specifications classes (for 

task TS-1). 

The machine starts at state 1, and upon execution (by the user) of event , transitions to either state 

2 or state 3, depending whether condition C1 is true or false.  The dashed arrows represent 

transitions that are automatically triggered by the machine (i.e., without direct user’s intervention).  

Thus, if state 2 is reached, the system moves automatically to state 5, while if it reaches state 3, it 

moves to either state 5 or to state 4 depending on whether condition C2 is true or false.  

Suppose that the first task specification (call it TS-1) is to drive the system to state 5.  In this case, 

regardless of whether conditions C1 and/or C2 are true or false, state 5 will be the guaranteed 



outcome of executing event .  Thus, it is inconsequential for the user to know which path the 

system takes from state 1 to state 5 after executing event .  Therefore, states 2, 3, and 4 can be 

grouped into a single specification class for task (TS-1) as depicted in Figure 1(b).  And since this 

specification class is actually superfluous to the user in this case, these three states can be omitted 

altogether, resulting in the simplified user model of 1(c). 

 

Figure 1(c): User model (for task TS-1) 

Suppose we now have another task specification.  This new task specification (TS-2) is to drive the 

system from state 1 to state 5 by way of state 3.  For this task, it is necessary that condition C1 be 

false. Four specification classes are defined in Figure 1(d). States 3 and 4 share the same 

specification class because it does not matter whether we reach state 5 directly from state 3 or via 3 

and then 4. To correctly and reliably execute the task the user only needs to know whether condition 

C1 is true or false before executing . Since the specification class containing state 2 is superfluous 

to the user in this case, this state can be omitted from the user model (Figure 1(e)). 



    
 

Figure 1(d): Machine mode and specifications classes   Figure 1(e): User model 

(for task TS-2).      (for task TS-2).  

In general, as can also be seen in the above example, there are events that are triggered by the user 

while other events are triggered by the machine (through a variety of internal mechanisms).  While 

user triggered events must always be presented in the user model, machine triggered events may or 

may not be monitored by the user provided the task specification can be met.  Such events can be 

presented explicitly in the user model, omitted from the user model entirely, or grouped together (by 

presenting several events as a single event in the user model). 

Verification of the User Model 

We are given a machine, an interface, and a user-model as proposed by the engineering design team. 

The interface and the associated user-model constitute a reduced description of the actual behaviors 

that take place in the machine. We are asked to verify whether the proposed interface and user 

model are correct for the task(s) that the user is expected to perform with this machine. This is the 

verification problem (Degani & Heymann, 2002). 

To get an insight into this problem consider the machine model presented in Figure 2(a). It consists 

of 5 states and a set of transitions ( β, , , and ) that are monitored by the user. The user’s task is 

to monitor the machine and predict its entry into state 4, which is illegal. Thus, there are two 

specification classes here: the legal class (containing states 1, 2, 3,5) and the illegal class (state 4). 



    
 

Figure 2(a): Machine model.     Figure 2(b): User model 

Let us suppose that we are provided with a proposed user model that is intended to enable the user 

to monitor the machine as required by the task specification.  This user model contains three states, 

A, B, (corresponding to the legal specification class) and C, which corresponds to the illegal state 4 

(see Figure 2(b)).  Thus when monitoring the machine through this model the user would expect the 

user model enters to enter state C if and only if the machine enters state 4. 

The user monitors the progress of the machine through the interface. The interface displays the three 

user model states (A, B, and C) and indicates which one is active. All events of the original machine 

appear in the user-model, except for event , which the user presumably need not monitor to 

achieve the task specification. Since the interface is based on the user-model’s description of the 

machine behavior, there is no difference, for the purpose of analysis, between the user model and 

the (graphical aspects of the) interface.  We therefore only employ the user model and the machine 

model in the verification process. 

Verification Procedure 

Let us try to see how one could verify whether the proposed user-model (and the interface 

embedded in it) is correct for the task of monitoring the machine and predicting entry into the illegal 

state 4. The user tracks the progress of the machine via the interface with the aid of the user-model.  

The machine starts at state 1 and the proposed user-model for the machine starts at state A. The 

machine can respond to event  and move to state 4, or to event  and move to state 3. In response 

to the event  the user model transitions to state C while in response to  it moves to B. Thus, when 

the user interacts with the machine, the machine model and user model run in parallel (and 

synchrony). This parallel run can be figuratively thought of as the operation of a “composite 



machine” in which each composite-state represents a pair of states (one from the machine and one 

from the user model).  Thus the composite machine starts at the pair A1 and in response to event  

moves to C4 and in response to  moves to B3. The composite machine is computed through a 

concurrent execution of the two respective models (Figure 2(c) shows a relevant fragment of the full 

composite). 

 

Figure 2(c): Composite model (fragment). 

The basis of the verification procedure rests on a careful analysis of the composite machine.  We 

wish to verify whether the user-model enters the designated illegal state C if and only if the machine 

model enters the illegal state 4.  Thus, in the composite machine, when a state-pair is entered, the 

component states must both be either legal or both illegal.  A violation of this requirement implies 

that the user model is incorrect (for the specified task). Mixed state pairs, where one is legal while 

the other is not, are called “error states”. 

As can be seen in the Figure, the composite model can enter not only the state C4 where both 

elements are illegal, but also states B4 and C3 where one component state is legal while the other is 

not.  Both B4 and C3 are thus error-states indicating that the user model is incorrect.  

Event Discrepancy 

The composite model above can reach states A3 and A2 which exhibit other types of inadequacies: 

At state 3 the machine model can respond to events β, γ, δ and, while at state 2 the machine can 

respond to events α, β, γ and  (recall that event μ has been deliberately omitted from the interface).  

In contrast, the user model, in state A, can respond only to events α and δ. Thus there exist 



discrepancies between the response capabilities of the machine model and the user model at these 

composite states.  For example, at state 3 the machine model responds to event γ, which the user 

model does not indicate as available in A.  Similarly, event α which the user model exhibits as 

possible at state A cannot occur at all when the machine is at state 3.  In many machines the user 

does not just monitor events but also operates the machine by triggering event transitions.  In these 

situations event discrepancies might mean that the user may try to trigger events that are inoperative 

at the current machine state or alternatively be unaware of operability of certain events.  In 

summary, event discrepancies do not necessarily present practical difficulties, but they do need to be 

considered and dealt with on a case-by-case basis. Correspondingly, events can be added to or 

omitted from the interface as needed. 

An Alternative User Model 

Figure 2(d) presents an alternative user model for the machine model and task specification of 

monitoring the machine and predict its entry into the illegal state 4.  It contains three states as 

before, but event μ is not omitted and events γ and δ are grouped as a single event θ (meaning that 

the user model does not distinguish between them and views them as equivalent).  

    
 

Figure 2(a): Machine model.    Figure 2(d): Alternative user model 

The full composite model is presented in Figure 2(e).  The composite contains no error states and 

since there are no user-triggered event transitions we are not overly concerned about event 

discrepancies in this particular case.  We therefore conclude that this new user-model is correct for 

this monitoring task. 



 

Figure 2(e). Composite model for the alternative user model. 

Note that in the above example there existed only two specification classes: the set of legal (or 

wanted) states (1,2,3, and 5), and the set of illegal (or unwanted) states (4). In general, there will be 

more than two specification classes for a task, in which case error states are any composite model 

pair where the two component states belong to distinct specification classes. 

Verification of An Autopilot Behavior 

In this section we shall briefly demonstrate the usefulness of the methodology by detailing the 

incorrect interface problem described in the introduction. We focus our attention on the vertical 

flight modes of the aircraft: the "ALTITUDE HOLD" mode, in which a specified altitude value is 

maintained constant, and the "VERTICAL SPEED" mode which controls the climb or descent rates.  

Machine Model 

Figure 3(a) shows a small fragment of the transitions among the vertical-flight modes. The vertical 

speed mode is either constrained by a target altitude (V/S to altitude setting), in which case a target 

altitude is armed for eventual capture, or it may be unconstrained (V/S unconstrained), in which 

case no target altitude is armed.  



 
 

Figure 3(a). Machine model of vertical modes.  

Each of the modes can be thought of as a distinct aircraft activity, which is fully defined in the 

autopilot and has an associated set of parameters. For example, the “V/S to altitude setting” 

represents a climb or descent activity, and is parameterized by the value of the vertical speed setting 

and the target-altitude setting. The “V/S unconstrained” activity is only parameterized by the value 

of the vertical speed setting.  

Some of the transitions among the modes are triggered by the internal dynamics of the system. 

When the aircraft altitude reaches a value that satisfies a certain dynamic condition, denoted 

formally as [Alt ∈ set altitude (ε)], an automatic transition to the activity "Capture altitude setting" 

takes place. The "Capture altitude setting" activity maneuvers the aircraft to the target altitude.  

The pilot can change the altitude setting at any time. There is a qualitative difference in the 

autopilot’s behavior depending on whether the altitude is changed to a value ahead or behind a 

specific critical altitude. Here by ahead we mean in a temporal sense, that is, "higher than" the 

critical altitude when climbing, and "lower than” the critical altitude when descending. (Similarly, 

behind means "lower than" when climbing, and "higher than" when descending). These altitude-

setting changes are shown in the machine model of Figure 3(a) by the transition labels “o->” for 

ahead and “<-o” for behind. Thus, when the autopilot is in the activity “V/S to altitude setting,” 

changing the altitude setting to a value behind the critical altitude triggers a transition to “V/S 

unconstrained.”  In this activity, the aircraft continues the current climb/descent without any 

effective altitude constraint. Changing the altitude setting to a value ahead of the critical altitude 

triggers a transition to the “V/S to altitude setting” activity, parameterized by the newly set altitude. 



User Model 

The user model is derived from the user manual provided to the pilot.  The description of the 

interface as relates to the vertical speed activities discussed above is shown in Figure 3(b).  It shows 

the same three activities, “V/S (constrained),” “V/S (unconstrained),” and Capture and differs from 

the machine model only by the event labels on the two outgoing transitions from “Capture.”  The 

symbol “-->” denotes that the pilot sets the newly set altitude ahead of the current aircraft altitude 

and “<--” when he or she set the altitude behind the current aircraft altitude. 

 
 

Figure 3(b). User model of vertical modes.  

The user model differs from the machine-model in the way in that the “critical altitude” is 

evaluated.  In the machine model this critical value is the aircraft altitude at the time of entry into 

the capture activity (capture start).  In the user model this critical altitude is the current altitude of 

the aircraft at the time of changing the altitude setting (aircraft altitude). These two values are 

inconsistent when the new altitude setting is ahead of the capture start value and behind the current 

aircraft altitude (marked in gray in Figure 3(c)).  



 
 

Figure 3(c). Capture profile (during climb).  

Formal Verification 

We turn now to a formal verification of the autopilot fragment discussed above. The task 

specification consists of the requirement that the pilot be able to predict whether, as a consequence 

of an altitude setting change, the target altitude is captured or not. The composite model is depicted 

in Figure 13(d) and shows explicitly how the error state occurs.  The event labels in the composite 

model are presented as the user-model events (and the corresponding machine events are in 

parentheses.) 

 
 

Figure 3(d). Composite model of vertical modes.  



When the newly set altitude is ahead of the current aircraft altitude it is always also ahead of the 

capture start altitude.  Similarly, when the new altitude is behind the capture start altitude it is also 

always behind the current aircraft altitude. However, when the newly set altitude is behind the 

current value, it can still be ahead of the capture start altitude.  The result is a contradiction because 

the user model indicates unconstrained flight while the autopilot is set to capture (Degani et al., 

2000). 

Generation of User Models and Interfaces 

In this Section we discuss a methodology for generation of user models. The objective of the 

methodology is to derive a user model that is correct for the specified tasks; namely, that it is free of 

error states and contains no problematic event discrepancies.  A second requirement is that this user 

model should be succinct.  That is, we want the model to be as simple as possible in terms of 

number of states, transitions and events necessary to describe and operate the system. 

The methodology for satisfying these two requirements is based on a systematic method for 

reducing a detailed state transition (machine) model of the system into a smaller model and then, if 

possible, omitting or abstracting some of its transitions and events.  The end result is a “most” 

succinct user model, which then serves as the basis for the interface construction. 

As in the problem of verification, the methodology requires that the machine’s behavior and user's 

tasks be fully specified. We assume, a priori, that the user's tasks are within the machine's 

capabilities, and that the machine’s responses to user-triggered events be deterministic.  

The conceptual approach for generating correct and succinct user-models is based on the 

observation that while the user-model must enable correct interaction with the machine, the user 

may not need to track every internal state of the machine.  Thus, two internal states, A and B 

belonging to the same specification class, can be grouped together and represented as a single state 

if the intrinsic details of whether the current internal state is A or B are inconsequential to the user 

(in that the system’s responses would be the same from the user’s perspective).   

Formally we say that two states A and B need not be distinguished, whenever (1) they both belong 

to the same specification class, (2) each user triggered event that is available and active in A is also 

available and active in B, and (3) whenever starting from either of the two states and triggering by 

the same event sequence, the state pairs visited, respectively, also satisfy conditions (1) and (2). 

State pairs that satisfy the above three conditions need not be distinguished by the user and are 



referred to as “compatible.” State pairs that do not satisfy the above three conditions are referred to 

as “incompatible”. 

An efficient algorithm for computing such compatible and incompatible state-pairs is based on the 

use of merger tables (Kohavi, 1978; Paull, and Unger, 1959).  A merger table is a table of cells that 

lists for each state pair of the machine, the set of all distinct state pairs that are reached through a 

single common transition event.  For a machine with n states, there are n*[n-1]/2 cells in the table, 

and by iteratively stepping through the table one event transition at a time, all incompatible state 

pairs are detected, thereby “resolving” the table.  All state-pairs that are not found to be 

incompatible are designated as compatible.  From these compatible pairs, the largest possible sets of 

compatible states, i.e., triplets, quadruples, quintuples, etc., are created.  These sets of compatible 

states are called “maximal compatible” sets and can be thought of as the building blocks of the user 

model (see Heymann & Degani, 2007 for the details of the algorithmic procedure for generating 

compatibles). The next step consists of collecting from the maximal compatibles a suitable subset 

adequate for construction of a correct and succinct user model. The formal criterion for such a 

selection is that the selected subset of maximal compatibles, constitute a “cover” of the original 

machine’s state set.  That is, each state of the original machine must be a member of at least one 

maximal compatible of the selected subset. To obtain a most succinct user model, we do not want 

just any cover, but rather a minimal one. That is, a cover such that none of the selected maximal 

compatibles can be omitted from the selected set without violating the cover property.  A second 

condition that we need to impose is that the set of target states of each transition emanating from a 

maximal compatible be included in a maximal compatible of the selected cover.  This condition may 

sometimes be inconsistent with the cover’s minimality condition in which case additional maximal 

compatibles are incrementally added to the minimal cover.  (In the worst case, this incremental 

addition of maximal compatibles will terminate successfully when all maximal compatibles are 

chosen). 

Once the suitable set of maximal compatibles has been selected as just described, the next step is to 

determine the transitions in this reduced model.  These are defined to be consistent with the original 

machine model and with the partition of the state set into specification classes.  The resultant model 

constitutes the user model from which the interface is constructed. 

Running Example 

Figure 4 is a description of a machine model that contains 18 states, 42 transitions, and 11 event 

labels.  Some of the transitions are manually triggered (ud, um, and up) while the rest are automatic.  



Four separate specification classes are defined for this machine: A, B, C, and D as highlighted in 

gray in the Figure.  The task requirement is that at each instant the user be able to predict the next 

specification class that the machine will enter either automatically or as a result of his or her 

interactions. 

Figure 4. Machine model and specification classes. 

Upon applying the algorithmic procedure for computing compatible sets to the machine model 

described above, the following eight maximal compatibles are obtained (Figure 5(a)): 

 

 

Fig. 5(a).  Eight maximal compatibles    Fig. 5(b) Two minimal covers.  



One interesting observation is that several internal states appear in more than one maximal 

compatible.  For example, internal states 21, 22, 31 and 32 appear in maximal compatibles 1, 2, 3, 

and 4, and internal state 11 appears in maximal compatible 1 and 3. Also, there are many sets of 

maximal compatibles that contain all the internal states of the machine and hence constitute covers.  

Two of these covers, {1,4,5,6,7,8} and {2,3,5,6,7,8}, are minimal (Figure 5(b)). 

The selection among the various minimal covers as candidates for user-model construction cannot 

be quantified.  Various kinds of engineering and human factors design considerations can be applied 

towards this decision, such as the number and intuitive nature of the states and transitions in each 

candidate cover, the physical interpretation of the reduced model, and technical ease of 

implementation.  Of course, when no profound reason exists to prefer one cover over another, any 

cover may be selected.  In the current example we selected the cover that consists of the maximal 

compatibles {2,3,5,6,7,8} for reasons that will be explained later. 

Constructing the Modes and Transitions in the User Model  

We now proceed to construct the user model.  We first designate the selected maximal compatibles 

(2,3,5,6,7,8 in our case) as user model states, sometimes referred to as modes.  Thus, maximal 

compatibles 2 and 3 are designated as modes A-1 and A-2 indicating that they belong to 

specification class A.  Maximal compatible 5 is mode B, and maximal compatibles 6 and 7 are 

designated as modes C-1 and C-2 respectively.  The last maximal compatible, 8, is mode D. 

 

 

Fig. 6. User model modes, their respective event labels, and resultant machine model target states. 

The next step is establishing the transitions of the user model.  We begin by building a table that 

lists all user model modes.  For each mode, the events that emanate from its constituent states are 



listed as well as their target state(s).  The resulting table is presented in Figure 6, where for example, 

event r emanates from (the constituent states of ) mode A-1 to states 51, 22, 32.   

Next we create the transitions between the modes of the user model as follows: for each mode (e.g., 

A-1), each emanating event (h,r,n,e,g,s,b, from A-1) is drawn to a mode that includes all the target 

state(s) of that transition (as listed in the parenthesis above each event in Figure 6).  For example, 

the transition labelled r goes from A-1 to A-1 as a self loop because A-1 includes the three target 

states (51, 22,32). The complete user model is depicted in Figure 7(a). 

 

Figure 7(a).  User model modes, transitions, and all event labels. 

Event Abstraction 

 

While it is possible to accept the model in Figure 7(a) as the user model (and as the foundation for 

the interface), there are several possibilities for further reduction and simplification of the model.  

We describe here three such possibilities: (1) elimination of non-determinism, (2) event label 

grouping, and (3) selected self-loop removal. 

With respect to the first possibility -- elimination of non-determinism -- note in Figure 7(a) the 

existence of non-deterministic transitions between modes.  For example, event label r emanates 

from mode A-2 to A-1 and also appears on the self-loop around A-2.  Such non-determinism is the 

by-product of the reduction process wherein many internal states (with their respective event 

transitions) are encapsulated into a single mode.  (This, in view of the principles of reduction 

process, is possible only within a given specification class).  



Within the confines of specification class A, it does not really matter whether the system remains in 

mode A-2 or transitions to A-1 in response to transition r.  We can thus eliminate this non-

determinism by deleting one of the r labels--either the one transitioning to A-1 or the one on the 

self-loop.  In general, we would prefer to delete transition between modes, and keep transitions that 

self-loop around a mode, because self-loop transitions do not produce mode switching on the 

interface. Thus, when the redundant event label r from A-2 to A-1 is deleted, r remains only in the 

self-loop.  Using the same logic, we delete event label e of the transition from A-2 to A-1, leaving it 

only on the self-loop around A-2 (see Figure 7(b)). 

 

Figure 7(b).  After eliminating of non-deterministic event labels e and r (from A-2 to A-1). 

Event label grouping is the second possibility to further abstract the model.  As can be seen in Fig. 

7(b), event labels e and g always appear together.  Nowhere in the model do we see e or g 

separately; whenever label e is enabled in a mode so is g.  Thus, groups of event labels that always 

appear together on a set of transitions can be abstracted into a single representative label because the 

distinction between them is inconsequential to the user who is monitoring such mode switching.  

Therefore, event labels e and g (outgoing from mode A-1, A-2, B, and D) can be abstracted into an 

event that we (arbitrarily) label as q.  Similarly, event labels n and s (on the outgoing transition from 

A-1 and A-2) are abstracted into p.  The results of these event groupings appear in Figure 7(c). 



 

Fig. 7(c). Event label groupings (q and p). 

Finally, the third possibility looks at events that occur on self-loops, which have no practical effect 

on the user model as no mode transition occurs as consequence.  Hence in many cases (but not 

always, e.g., when timing events occur or when some mode related information gets updated) we 

have an opportunity to eliminate such selected self-loop events from the user model.  As a 

consequence event labels that appear only in self-loops can be completely removed (e.g., event r). 

Event labels p, q, and b can be removed from self-loops (but one has to be careful not to remove 

them from inter-mode transitions).  In the model presented in Fig. 7(d), all these self-loop events 

were indeed removed.  The result is a correct and succinct user model that has been reduced to 

contain 6 modes, 12 transitions, and only 8 different event labels. 

 

Fig. 7. The final user model. 

The user model of Figure 7(d) has been obtained by starting from a set of maximal compatibles 

2,3,5,6,7,8 that constituted a minimal cover of the state set (Figure 5(a)).  Selecting a minimal cover 



is always advisable because it will generally lead to a succinct user model.  However, not every 

initial minimal cover is necessarily a sufficient set of maximal compatibles for the model 

construction.  Sometimes a minimal cover may require augmentation with additional maximal 

compatibles.  For example, had we started the model construction with the minimal cover consisting 

of maximal compatibles 1,4,5,6,7,8, we would have discovered that the target set (of states) reached 

from the constituent states of compatible 4 in response to event n consists of the states 51 and 12. 

This target set is not included in any of the maximal compatibles of the cover 1,4,5,6,7,8 but is 

included in maximal compatible 2.  Therefore, maximal compatible 2 must be added.  The resulting 

set (now consisting of maximal compatible 1,2,4,5,6,7,8) is no longer a minimal cover, but rather a 

sufficient cover for the model. 

Related Work 

David Parnas (1969) was probably the first to apply formal methods to user interaction with a 

computer.  Using the finite state machine formalism, he illustrated several design errors such as 

“almost-alike” states, inconsistent ways to reach states, and user input problems.  Foley and Wallace 

(1974) also used the finite state machine formalism to develop a language for human-computer 

interaction.  Jacob (1983) used the same formalism for designing specifications for user interaction 

with a complex communication system (1986), later extending the approach to model direct 

manipulation of user interfaces (cf. Wasserman, 1985).  During the same period, Mackinlay (1986) 

described a "composition algebra" to support the formalization of graphical user interface designs 

enabling a coherent flow from specification to implementation. 

Reisner (1981, 1982) articulated the goal of designing better user interfaces by adapting formal 

methods from mainstream computer science. She discussed key technical challenges that are still 

relevant today: How can formal models be integrated with models of attention, perception, 

cognition, and memory? How can discrete models be integrated with models of time and other 

continuous variables? How can models be used during the design phase to make good decisions that 

could not be made using common sense or other less costly methods? 

The study of formal models for human-interactive systems expanded rapidly during the 1990s with 

some 200 articles and books on this topic. Harrison and Thimbleby (1990) review early work on 

formal methods for the design and analysis of GUIs, procedures, and interactive systems (see also 

Harrison & Duke, 1995).  Bredereke and Lankenau (2004) review more recent work on the analysis 

and correction of design errors in mode-based systems.  



Hinze, Malik, and Malik (2006) apply formal methods to the design of a mobile, context-sensitive 

tourist information system (TIP) for implementation on small-screen devices. They conclude:  

"The formal modeling approach has greatly improved the system design. By describing the 

requirements formally, developers are forced to think carefully about the planned system. The 

activity of specifying and modeling on its own helps to understand and clarify many aspects of the 

system to be constructed... Exhaustive simulation and analysis of the model allows for finding 

subtle problems at this very early stage of the design. Several issues with the proposed interaction 

protocols have been discovered and solved, which may otherwise have remained undetected until 

much later during the implementation of the system." 

John Rushby and his colleagues (Crow, Javaux & Rushby, 2000; Rushby, 2001, 2002) analyzed 

human-automation interaction, demonstrating the use of theorem-provers and model-checkers to 

explain deviations of pilots' mental models from correct models of autopilot behavior. They showed 

how formal methods could be used in a cycle of analysis, re-design, and re-analysis to improve a 

human-machine system. Sherry, Medina, Feary, and Otiker (2008) address issues of scale and 

complexity in the next-generation air-traffic management system.  They propose formal models that 

can help estimate time, cost, and risk parameters for system-level changes entailed by partially 

automated subsystems. These models can also help identify functions that are not supported by the 

automation.   

Combéfis and Pecheur (2009) use a formal approach to user-modeling. They propose general 

properties of "good" mental models, as well as a method for generating mental models. This work 

extends earlier work in which informal or handcrafted formal mental models are used. Their 

methodology increases the objectivity of model-checking using composite user-system-interface 

behavioral models, while at the same time addressing problems such as how to model the actual 

observation of system-state by the user, in contrast to theoretical observability. 

Rukšėnas, Curzon, Back, and Blandford (2008; cf. Su, Bowman, & Barnard, 2008) integrate a 

psychologically oriented architecture with a model-checking environment and apply this system to 

the analysis of human error. Separating the device model from the user model, they focus on the 

user's interpretation of device behaviors. By increasing the psychological realism of the user model, 

they identify potential user errors triggered by misinterpretation or confusion. They discuss a 

broader design and analysis framework, which integrates theorem-proving, model-checking, design 

rules, and psychological models at increasing levels of realism. "...[Even a] small number of 

principles is rich enough for plausible erroneous behavior to emerge that was not directly expected." 



Drewes (2006) and others have recently generalized the approach of describing user interfaces with 

formal grammars. This work aims to solve some of the problems of visualizing multivariate time 

series, ontologies, and other complex data structures. The research maintains definite continuity 

with the early work of Reisner, Mackinlay, Larkin and Simon (1987), Casner (1991), and others, 

while aiming at higher levels of complexity in terms of both system size and hybrid structure. 

Most of the work discussed above has used some variant of concurrent, communicating finite-state 

machines, direct descendants of Petri nets. The models are framed in terms of discrete mathematics, 

and they do not explicitly represent continuous variables, such as time, probability, or graded 

response potentials (Jamieson & Vicente, 2005).  Tomlin, Mitchell, Bayen, and Oishi (2003) 

provide an overview of current methods for modeling and verifying hybrid systems, using a 

commercial jet autopilot as a case study. Oishi, Mitchell, Tomlin, & Saint-Pierre (2006) show how 

to prove simultaneous satisfaction of envelope protection and stability requirements, illustrating 

their method with a two-aircraft collision avoidance scenario.  

Today there is no doubt that formal methods can provide insights into complex human-interactive 

systems -- insights unavailable to intuitive or even quantitative analyses (Degani, 2004; Degani, 

Heymann & Gellatly, 2011; Leveson, 2009).  On the other hand, some of the early issues raised by 

Reisner (1981, 1982) still remain with respect to hybrid systems, psychological factors, user 

expectation and population stereotypes, scaling up to realistic systems (Berstel, Reghizzi, Roussel & 

San Pietro, 2005), and making formal methods accessible to and usable by non-specialists 

(Chakrabarti & Sukumaran, 2009; Gow & Thimbleby, 2006; Gow, Thimbleby, & Cairns, 2006). 

Conclusions and Future Work 

In this chapter we introduced a formal methodology for analysis and design of human-automation 

interaction.  Specifically we focused our attention on the issue of whether a given interface of a 

complex system such as an aircraft autopilot can be operated correctly and reliably under all 

operating conditions without the possible occurrence of unexpected automation responses. We also 

dealt with the problem of generating efficient (succinct) interfaces for such systems starting with a 

detailed knowledge of the system’s behavior.   

Key to the verification methodology are two models.  The first is a model of the machine, which 

describes all the relevant behavior and responses of the system and is obtained from engineering 

specifications.  The second is a user model which is a formal description of all the information 

provided to the user by the manufacturer regarding the operation of the system under consideration.  



Such information is frequently given in user manuals, operating instructions, training, and may also 

involve user expectations. The verification is based on a concurrent execution of the two models 

viewed from the user’s perspective.  This verification procedure is aimed at detecting interface 

discrepancies such as “error states” and “event discrepancies.” The methodology is described in 

detail for systems that are modeled as simple finite state machines.  The behavioral specifications 

are given in terms of a partition of the state space into distinct classes that need to be distinguished 

by the user. 

The generation of interfaces is based on a systematic top-down reduction procedure of a detailed 

model of the machine under consideration.  The customary interface design approach is a bottom-up 

process in which engineering knowledge of the system and a trial-and-error evaluation is used to 

generate the interface.  The top-down reduction procedure presented herein guarantees that the 

resultant user model, which serves as the basis for the interface design process, is both correct and 

succinct.  The procedure is again demonstrated by modeling the systems as a simple finite state 

machine and the specification in terms of distinct classes.  While we did not address here the 

potential problem of computational complexity of reducing large state spaces, a computerized tool 

developed to generate interfaces was successfully tested on systems containing several hundred 

states (Shiffman, Degani, & Heymann, 2005). 

Our emphasis in this chapter has been on formal methods based on the premise that both the system 

and the operational requirements can be modeled in a rigorous mathematical framework.  While 

such an approach has been common in engineering practice and computer science, the research 

described in this chapter involves extending these methods to human-interactive systems, thus 

broadening the definition of system under study to include human operators. Various formalisms are 

available for representing the state-space. While we have employed the finite state machine 

formalism to demonstrate our approach, the basic verification and interface design approach can be 

readily generalized and extended to more complex system models and specifications.  

The methodology for modeling and analysis of human machine interaction described in the present 

chapter constitutes a fruitful foundation for design and analysis of a wide range of applications 

where humans interact with machines.  In addition to aviation, a promising domain of application is 

the automotive industry where increasingly sophisticated automation aids (e.g., lane keeping, lane 

changing, and adaptive speed control systems) are being tested and introduced.  New computational 

and informational devices that are being introduced in the automotive industry (collectively called 

infotainment systems) are also amenable to the kind of user interaction correctness analysis 



described above.  Similar information systems are introduced in aviation (e.g., electronic flight 

bags) and in the medical field.   

Below are a few chosen extensions of the work described in this chapter: 

1. Expansion of the verification methodology for exploiting the existence of potentially 

problematic behaviors of user models. Focus should be placed on ambiguous behaviors 

related to unexpected interactions from the point of view of the user. 

2. Development of a formal tool for automatic verification of user machine interfaces in the 

spirit of the methodology described and explained in this chapter.  

3. Development of a practical tool for implementation of system reduction and interface 

design. The methodology described here has been tested and applied manually but for larger 

system an automatic tool is desirable. 

4. Development of a formal approach for the creation and categorization of design patterns in 

the context of user interaction, as well as a modeling tool for implementation and 

verification of design patterns and identification of opportunities for their implentation. 

5. Development of additional user-interaction correctness criteria and possibly extending the 

set of criterions to include “softer” properties such as population stereotypes and user 

expectations, as well as some basic rules of what is an “acceptable” as well as “desirable” 

user interaction design. 

As a final comment, the approach and methodology presented here can serve as a starting point in 

the development of future adaptive automation wherein system and interface reconfiguration will 

take place in response to evolving operating conditions as well as users’ preferences, needs, and 

information requirements.  
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